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Figure1. Processing procedure of MapReduce 
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Abstract—In this paper, we describe how document 
clustering for large collection can be efficiently 
implemented with MapReduce. Hadoop implementation 
provides a convenient and flexible framework for 
distributed computing on a cluster of commodity machines. 
The design and implementation of tfidf and K-Means 
algorithm on MapReduce is presented. More importantly, 
we improved the efficiency and effectiveness of the 
algorithm. Finally, we give the results and some related 
discussion. 
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I. INTRODUCTION 
With the rapid development of the Internet, huge 

volumes of documents need to be processed in a short 
time. Research on web mining focuses on scalable 
method applicable to mass documents[1]. Storage and 
computing of mass documents data in a distributed 
system is an alternative method[2]. In distributed 
computing, a problem is divided into many tasks, each of 
which is solved by one computer. However, many 
problems such as task scheduling, fault tolerance and 
inter-machine communication are very tricky for 
programmers with little experience with parallel and 
distributed system. 

In this paper we describe our experiences and findings 
of document clustering based on MapReduce. 
MapReduce [3] is a framework which programmers only 
need to specify Map and Reduce functions to make a 
huge task parallelize and execute on a large cluster of 
commodity machines. In the document pre-processing 
stage, we design a new iterative algorithm to calculate 
tfidf weight on MapReduce in order to evaluate how 
important a term is to a document in a corpus. Then, a K-
Means clustering is implemented on MapReduce to 
partition all documents into k clusters in which each 
documents belongs to the cluster with the same meaning. 
More importantly, we find that ignoring the terms with 
the highest document frequencies can not only speed up 
our algorithm on MapReduce, but also improve the 
precision of document clustering slightly. Experiments 
show that our method in approximately linear growth in 
required running time with increasing corpus size for 
corpus containing several ten thousand documents. 

II. MAPREDUCE AND HADOOP 
Many real world tasks have the same characteristics: 

a computation is applied over a large number of records 

to generate partial results, which are then aggregated in 
some fashion. MapReduce is a programming model 
which is specializing in handing problems having 
“Divide and Conquer” structure. MapReduce inspired by 
functional language consists of the Map and Reduce 
abstract concepts. A map function process each logical 
“record” in our input in order to compute a set of 
intermediate key/value pairs, and then a Reduce function 
accepts an intermediate key and a set of values for that 
key in order to combine the derived data appropriately. 
Figure 1 illustrates the two processing stages. 

Apache Hadoop [4] is a Java software framework that 
consists of a MapReduce model and a distributed file 
system (HDFS, similar to GFS[5]). HDFS is designed to 
scale to mass storage across multiple machines, and 
transparently provides read/write, backup and fault-
tolerance for users. Hadoop is becoming increasingly 
popular[6, 7] because it hides the messy details of 
parallelization, fault-tolerance, data distribution and load 
balancing. 

III. CALCULATE TFIDF ON MAPREDUCE 
The tfidf weight [8](term frequency–inverse 

document frequency) is a weight often used in text 
mining and information retrieval. The importance of a 
term increases proportionally to the number of times a 
term appears in the document but is offset by the 
frequency of the term in the corpus. Therefore the weight 
of feature term it  in the corpus can be calculated using 
the classic tfidf scheme in formula (1). 

/ log( / )ij ij i i j iw tf idf t d N n= × = ×  (1) 
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ijf  is the frequency of feature term it  in the 

document jd . It can be designated /i jt d , where it  is 

the number of occurrences of the term it  in document jd , 

and jd  is the total number of terms in document jd . N  

is the total number of documents in the corpus, and in  is 
the number of documents that contains term it . We can 
see from the formula (1) that we should calculate it , 

jd  and in  on MapReduce to get tfidf. 
1) Number of times a term it  appears in a given 

document:  The format of input data to Map function is 
(Docname, content), which means that document name is 
key and relevant content is value. For each term in the 
document, Map function output ((term, Docname), 1) 
which means this term occurrences one time in this 
document. Reduce functions accepts the output of former 
Map functions, and aggregate the records with the same 
key. The output format of Reduce functions is ((term, 
Docname), it ). In practice, we can add a Combiner 
function to accelerate the computing speed. The function 
of Combiner function is the same as the Reduce function. 

2) Number of terms in each document:  This step’s 
input data is the output of the first step, and the map 
functions convert the format into (Docname, (term, it )). 
The Reduce functions get the records sharing the same 
docname, and accumulate the number of different terms 

it  into jd  in the same document. The output format of 

this step is ((term, Docname), ( it , jd ))。 
3) Number of documents term it  appears in:  The 

Map function in this step turn the output of above step 
into the format of (term, (Docname, it , jd , 1)), which 
means that this term appears in one document. The 
Reduce function accumulate “1” with the same term into 

in , this is the number of documents contain the term 
it 。 The output format of this step is ((term, Docname), 

( it , jd , in )).  
4) Calculate tfidf :  The output of step 3 means 

that it  is the occurrence time of term it  in document jd , 

jd  is the number of all terms in document jd  and in  is 

the number of documents contain the term it . We can 
just use formula (1) to calculate tfidf of terms in different 
documents. The output format of the result is 

1 1( , ( & , , & ))n nDocname term tfidf term tfidf . 

IV. K-MEANS CLUSTERING 
K-Means clustering [9] choose k initial points and 

mark each as a center point for one of the k sets. Then for 
every item in the total data set it marks which of the k 
sets it is closest to. It then finds the average center of 
each set, by averaging the points which are closest to the 

set. With the new set of centers (centroid), it repeats the 
algorithm until convergence has been reached. 

The implementation of document clustering on 
MapReduce accepts two input directories: one is the 
documents directory with the output of calculating tfidf, 
and one is centers directory with k initial document 
centers. The k initial document centers are chosen from 
the records of documents directory. Note that the k-line 
document data have the same terms as fewer as possible. 

In every iteration, the MapReduce framework will 
partition the input files of document directory into a set 
of M splits, and then these splits are processed in parallel 
by M Map functions. Map functions read in a document 
with the 
format 1 1( , ( & , , & ))n nDocname term tfidf term tfidf . 
Map functions should determine which of the current set 
of k document centers (in centers directory) the 
document is closest to and emits a record containing all 
the document’s data and its chosen k-center with the 
format 

1 1( , ( , & , , & ))n nk center Docname term tfidf term tfidf− . 
The Reduce function receives a k-center and all 
documents which are bound to this k-center. It should 
calculate a new k-center, and put the new k-center in 
centers directory. To evaluate the distance between any 
two documents, we use the cosine similarity metric of 
tfidf, and use arithmetic average to calculate the new k-
center. Note that the contents in document directory will 
not change during the process. The whole K-Means 
clustering on MapReduce can be expressed as the 
following two step: 

 
: ( , & _ )

( _ , ( , & _ )
map Docname term tfidf list
k center Docname term tfidf list

   →
 (2) 

 
:( _ ,( , & _ )

( _ _ , & _ )
reduce k center Docname term tfidf list

new k center term tfidf list→
(3) 

V. EXPERIMENT EVALUATIONS 
In our experiment, we used Hadoop version 0.18.2 

running on a cluster with 5 machines (one is the master, 
also act as a slave). Each machine has two single-core 
processors (running at 2.33GHz), 1GB memory, and 
130GB disk, and the network bandwidth is 100Mbps. 
The configuration of Hadoop is two map functions 
running on a processor core simultaneously. The number 
of map functions can be controlled precisely. 

We used the Sogou documents classification corpus1, 
containing 80k documents, totaling approximately 
211MB. There are 10 different subjects in the corpus, 
and 8k documents in each subject. These documents are 
parsed and terms are stemmed. All empty words (we 
maintain a Chinese stop word list) in these documents 
are removed. 

We always use running time to measure the 
efficiency. One issue that became evident in initial 
experiments was the prevalence of “stragglers”, which 
means one or two reducers that take significantly longer 

                                                 
1 http://www.sogou.com/labs/dl/c.html 
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Figure2. Running time of tfidf algorithm with the different size of 
collections 

than the others (this is a common problem, see) due to 
the Zipfian distribution of terms. In our experiment, we 
eliminate the terms with the highest document 

frequencies. We adopt a 95% cut at step 3 in section 3, 
which means that the most frequent 5% of terms were 
ignored. This method greatly increases the efficiency of 
our algorithm on Hadoop. On the other hand, because the 
terms we discarded are non-discriminative, the precision 
of document clustering is improved slightly. 

Figure 2 shows the running time of tfidf algorithm 
on our cluster with increasing collection size for 
collection containing 80k documents. We get the result 
just to see the effect of our algorithm on Hadoop, don’t 
configure our cluster in optimizing. We find the time 
used for calculating the whole collection is more than 
half an hour. However, the running time and space 
required is approximately linear with the size of 
collection, this is characteristics we expect in processing 
mass data. 

We measure the running time of K-Means 
clustering on the clusters, and then implement 
conventional K-Means on single machine as a 
benchmark. These results were compared against an 
equivalent run on the machine with the same times of 
iterations (5 times). We can see from Figure 3 that the 
running time of K-Means algorithm on a cluster with 5 

machines relatively much less than on a single machine. 
More importantly, with the size increasing of our 
collections, the advantage of efficiency has become 
increasingly evident. 

VI.   CONCLUSIONS 
The paper has introduced a mass documents 

clustering in a distributed system Hadoop. Experiments 
show the scalability of our method in processing mass 
data. The contributions of our work lie in both design 
and implement tfidf and K-Means algorithm on 
MapReduce. We believe that our work provides an 
example of a programming paradigm that could be useful 
for a broad range of text analysis problems. Finally, we 
always pay attention to the alternative approaches to 
similar problems based on MapReduce [10]. Hadoop 
provides unprecedented opportunities for researchers to 
handle real-world problems at scale. 
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